13 November 2025

High-Grade Gold in Expansion & Infill Drilling at Tavsan Mine

Ariana Resources plc (ASX:AA2, AIM:AAU, "Ariana" or the "Company"), the mineral exploration, development and production company with gold project interests in Africa and Europe, provides the following summary of the ongoing drilling programme at Tavsan Mine, western Türkiye (23.5% owned by Ariana).

Highlights

- o Assay results received from 71 hole programme at Tavsan North Zone, designed to identify resource expansion opportunities and to complete infill drilling.
- o Results include the following best intercepts:
 - 5.10m @ 7.23g/t Au + 3.61g/t Ag (**TAV-D002-25**)
 - 8.50m @ 3.70g/t Au + 2.09g/t Ag (TAV-D138B-25)
 - 7.30m @ 4.02g/t Au + 4.81g/t Ag (TAV-D045-25) including 1.00m @ 21.54g/t Au + 8.31g/t Ag
- o Mineralisation now confirmed to extend beyond current JORC Resource both at depth and along strike and in areas between planned pits
- o Drilling is continuing in the Main and South Zone, and other areas across the Tavsan Mine region.
- A JORC Resource update will be completed at the end of the 15,000m programme at Tavsan, expected in Q3 2026.

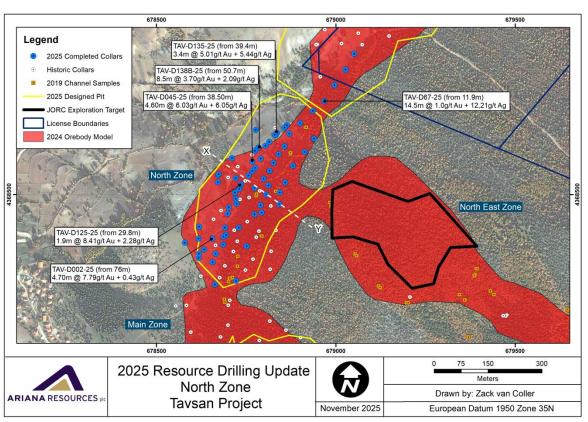
13 November 2025

Dr. Kerim Sener, Managing Director, commented:

"This is an excellent set of drilling results from the ongoing Tavsan diamond drilling programme. These results relate to the drilling recently completed in the Tavsan North zone, which will become the next open pit to be developed for the mine. The new data confirms our understanding of the geology and demonstrates the continuity of some higher-grade zones in this area.

This is expected to facilitate an expansion of the Resource and ultimately the Reserve in this area, as we continue to work towards further increases to the expected total 8-year life of mine at Tavsan. The mine has already been in production from its Main Zone for almost two years and went operational through its heap-leach just last month."

Tavsan North Zone Drilling


Since the start of drilling at Tavsan early this year, over 9,480m of HQ diamond drilling has been completed by Q3 2025. Of this, 5,345m of drilling was completed across 71 holes at the North Zone (**Figure 1**), with assay results obtained for all 71 holes as drilling continues, with results expected for other areas of the Tavsan Mine, specifically extensions of the Main and South zones.

Drilling has included infill holes to aid mine planning, but also drilling around the periphery of the currently defined resources, with mineralisation now confirmed to extend beyond the current resource outlines, both at depth and along strike. Tavsan contains a JORC 2012 Measured, Indicated and Inferred Resource of 7.65Mt at 1.26g/t for 311,000oz Au and 1.1Moz Ag. A resource update will be completed at the end of the drilling programme, currently expected in Q3 2026.

Key intercepts to date include:

- 5.10m @ 7.23g/t Au + 3.61g/t Ag from 76.0m in TAV-D002-25
- 8.50m @ 3.70g/t Au + 2.09g/t Ag from 50.7m in TAV-D138B-25
- 7.30m @ 4.02g/t Au + 4.81g/t Ag from 35.8m in TAV-D045-25
 - including 1.00m @ 21.54g/t Au + 8.31g/t Ag from 41.5m
- 3.40m @ 5.01g/t Au + 5.44g/t Ag from 39.4m in TAV-D135-25
- 6.70m @ 2.42g/t Au + 1.94g/t Ag from 64.0m in TAV-D057-25
- 1.90m @ 8.41g/t Au + 2.38g/t Ag from 29.8m in TAV-D125-25

13 November 2025

Figure 1: Plan view of Tavsan showing historic and recently completed drilling in the North Zone in relation to the currently defined resources, currently planned pit outlines and target areas.

The infill drilling in North Zone has confirmed the continuity of the high-grade domain, as previously modelled. Gaps in the previous model have also been drilled and have intercepted mineralisation at the expected depths.

The peripheral drilling has indicated a continuation of mineralisation deeper than previously modelled, extending the mineralised zone into an area of 90m (dip) by 200m (strike). Additionally, drilling in the areas between the currently planned pits has shown the continuation of mineralisation across these 50m by 125m gaps.

13 November 2025

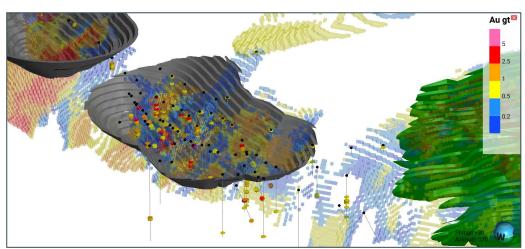


Figure 2: 3D view of Tavsan North Zone showing 2025 drilling within and around the currently planned pits (grey). The March 2024 block model is shown, coloured on the same scale as the assay results. Parts of the Main Zone (green) have been mined already. Drilling and assays are only shown for 2025 for simplicity and only intercepts greater than 0.5g/t Au are shown.

Significant gold intercepts were calculated for the 2025 Tavsan drilling using a 0.5g/t Au minimum cut-off and allowing for up to 1m internal dilution. Intercepts were calculated using Kiziltepe Mine Laboratory ("KML") data. All significant intercepts are provided in Table 1 overleaf, with intercepts above 5g/t Au x metres, which are considered material to the project listed in the table below.

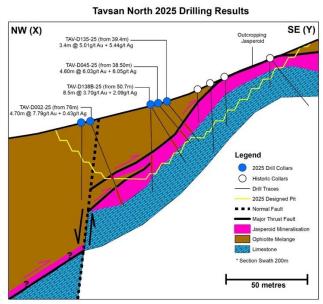
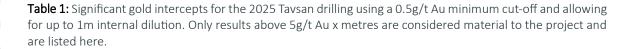



Figure 3: Northwest-southeast cross-section through Tavsan North Zone, highlighting key 2025 drill intercepts and the geological interpretation for an approximate 200m swath.

Hole ID	From (ı	m)	To (m)	Interval (m)	Au g/t	Ag g/t
		76.0	81.1	5.1	7.23	3.61
TAV D002 25	including	77.1	78.4	1.3	8.31	0.25
TAV-D002-25	including	78.4	78.8	0.4	16.32	0.60
	including	78.8	80.1	1.3	9.64	0.25
TAV-D003-25		58.0	61.3	3.3	2.72	14.96
TAV-D005-25		46.8	50.0	3.2	2.58	0.25
TAV-D009-25		18.8	24.0	5.2	2.11	3.69
TAV-D009-25	including	19.3	20.2	0.9	5.73	2.86
TAV-D017-25		5.2	10.5	5.3	2.09	9.12
TAV-D021-25		3.8	9.8	6.0	0.93	26.75
TAV-DUZ1-25		16.0	22.3	6.3	1.10	1.33
TAV-D042-25		10.6	17.0	6.4	1.68	13.32
TAV-D044-25		35.0	37.2	2.2	2.44	2.06
TAV-D045-25		35.8	43.1	7.3	4.02	4.81
TAV-D043-23	including	41.5	42.5	1.0	21.54	8.31
TAV-D057-25		64.0	70.7	6.7	2.42	1.94
TAV-D065-25		52.5	57.2	4.7	1.13	280.82
TAV-D067-25		11.9	26.3	14.5	1.00	12.21
TAV-D069-25		4.0	10.5	6.5	1.30	10.60
TAV-D118-25		20.4	23.8	3.4	2.04	1.15
		29.8	31.7	1.9	8.41	2.38
TAV-D125-25	including	29.8	30.8	1.0	5.51	0.25
	including	30.8	31.7	0.9	11.63	4.75
		39.4	42.8	3.4	5.01	5.44
TAV-D135-25	including	39.4	40.7	1.3	8.37	0.25
141-D122-52		67.2	73.2	6.0	1.22	0.75
		75.8	81.7	5.9	1.13	1.20
TAV-D138B-25		50.7	59.2	8.5	3.70	2.09
141-0120D-52	including	50.7	51.9	1.2	9.93	1.63
TAV-D139-25		37.4	41.0	3.6	1.54	11.01

13 November 2025

Sampling and Assaying Procedures

All diamond drill core from Tavsan has been logged and sampled at the Tavsan Mine site and analysed at the Kiziltepe Mine Laboratory ("KML"), where results are assessed systematically.

HQ-size drill-core samples from the drilling programme at Tavsan were cut in half by a diamond saw and sent for analysis in batches in line with the Company's quality control procedures. Core recovery for all drilling conducted at Tavsan during this 2025 campaign was 88%.

From this programme, a total of 2,476 sample results for 1,818 metres of sampled drill core has been returned from the KML (including 525 QA/QC samples). Samples are also being analysed by ALS Global in Izmir as an external laboratory check as part of the QA/QC procedures used for the project, with a minimum 10% check rate to be achieved by the end of the drilling programme.

QA/QC sample insertion rates vary depending on the batch size accepted by the laboratory. During the 2021-2025 drilling, Zenit QA/QC protocol required 1 blank, 1 CRM, 1 field duplicate, 1 pulp duplicate and over 10% samples analysed at an external laboratory. Since October 2022, KML has been accredited by the Turkish Accreditation Agency (TÜRKAK) with 'TS EN ISO/IEC 17025:2017 General Requirements for the Competence of Experimental and Calibration Laboratory'.

All samples were assayed for gold using a 30g fire assay. Multi-element ICP was used for analyses of other elements. Reviews of the assay results have determined that all Quality Control and Quality Assurance samples (blanks, standards, field duplicates and pulp duplicates) passed the required quality control checks established by the Company, with duplicate samples showing excellent correlation. Laboratory sample preparation, assaying procedures and chain of custody are appropriately controlled. Zenit maintains an archive of half-core samples and a photographic record of all cores for future reference.

13 November 2025

Tavşan Mineral Resource Estimate

MINERAL	CLASSIFICATION	TONNAGE	GRA	ADE	CONTAIN	ED METAL
DOMAIN		(TONNES)	Au (g/t)	Ag (g/t)	Au (oz)	Ag (oz)
High-grade	Measured	781,800	2.53	4.32	63,600	108,600
Domain Cut-off: 1.5g/t	Indicated	286,700	2.46	5.72	22,700	52,700
Au	Inferred	94,600	2.35	5.74	7,100	17,400
	TOTAL	1,163,000	2.50	4.78	93,400	178,700
Low-grade	Measured	2,981,600	1.04	4.86	99,900	466,300
Domain Cut-off: 0.5g/t	Indicated	2,131,600	1.04	3.89	71,300	266,400
Au	Inferred	1,373,900	1.05	4.37	46,300	192,900
	TOTAL	6,487,100	1.04	4.44	217,600	925,700
TOTAL	Measured	3,763,300	1.35	4.75	163,500	574,900
	Indicated	2,418,300	1.21	4.10	94,000	319,100
	Inferred	1,468,500	1.13	4.46	53,400	210,400
	TOTAL	7,650,100	1.26	4.49	311,000	1,104,400

Notes:

- The Tavşan Mineral Resource Estimate is reported in accordance with the JORC Code. Reported using variable cut-off grades of low domain of 0.5g/t Au and high domain of 1.5g/t Au.
- 2. The Tavşan Mineral Resource Estimate is reported inclusive of Reserves.
- Refer to sections 5.6.6 and 5.6.7 of the Independent Geologist's Report (IGR) for further information regarding the Tayşan Mineral Resource Estimate including the information required by ASX Listing Rule 5.8.

Tavşan Ore Reserves

CATEGORY	TONNAGE	GR/	ADE	CONTAINED METAL		
	(MT)	Au (g/t)	Ag (g/t)	Au (oz)	Ag (oz)	
Proven	2.5	1.46	5.02	116,400	401,100	
Probable	2.0	1.32	4.15	84,600	266,200	
TOTAL	4.5	1.40	4.63	200,900	667,300	

Notes:

- The Tavşan Ore Reserves are reported in accordance with the JORC Code. Reported using variable cut-off grades of low domain of 0.5g/t Au and high domain of 1.5g/t Au.
- Refer to section 5.6.8 of the IGR for further information regarding the Tavşan Ore Reserves including the information required by ASX Listing Rule 5.9.

13 November 2025

Intercepts Table for Tavsan North Zone

Gold intercepts for the 2025 Tavsan drilling using a 0.5g/t Au minimum cut-off and allowing for up to 1m internal dilution.

Hole ID		From	То	Interval	Au g/t	Ag g/t
		76.0	81.1	5.1	7.23	3.61
	including	77.1	78.4	1.3	8.31	0.25
TAV-D002-25	including	78.4	78.8	0.4	16.32	0.60
TAV-D002-23	including	78.8	80.1	1.3	9.64	0.25
	including	80.1	80.7	0.7	7.31	1.32
		94.6	96.1	1.5	0.79	34.33
TAV-D003-25		58.0	61.3	3.3	2.72	14.96
TAV-D003-23		61.7	62.2	0.5	0.65	0.25
		46.8	50.0	3.2	2.58	0.25
TAV-D005-25		53.3	54.4	1.1	2.26	2.76
		58.1	60.1	2.0	1.35	0.86
		18.8	24.0	5.2	2.11	3.69
	including	19.3	20.2	0.9	5.73	2.86
		29.0	30.3	1.3	2.88	4.11
TAV-D009-25	including	29.0	29.4	0.4	6.87	7.76
		33.8	34.4	0.6	0.89	0.67
		37.6	38.7	1.1	0.65	0.87
		39.8	42.2	2.4	1.99	1.88
		22.4	24.3	1.9	2.31	11.32
		32.6	33.7	1.1	0.88	0.77
TAN/ DO11 25		45.5	46.5	1.0	1.25	0.25
TAV-D011-25		47.5	49.2	1.7	0.63	0.41
		63.5	64.8	1.3	0.65	0.25
		98.7	99.8	1.1	0.68	0.52
TAV-D015-25		11.2	13.5	2.3	1.83	82.49
TAN/ DO47 25		5.2	10.5	5.3	2.09	9.12
TAV-D017-25	including	6.4	7.0	0.6	5.66	6.59
		0.0	1.9	1.9	1.54	1.92
TAN/ D024 25		3.8	9.8	6.0	0.93	26.75
TAV-D021-25		16.0	22.3	6.3	1.10	1.33
		35.7	36.2	0.5	0.53	7.83
TAV D022 25		2.0	2.6	0.6	0.60	5.69
TAV-D023-25		22.0	22.8	0.8	0.68	5.67

Hole ID		From	То	Interval	Au g/t	Ag g/t
TAV-D025-25		0.0	2.0	2.0	1.10	5.82
TAV-D027-25		0.0	1.3	1.3	1.08	4.45
TAV-D028-25		30.5	31.0	0.5	0.76	4.06
TAV-D031-25		0.0	1.6	1.6	0.76	14.34
TAV-D051-25		16.5	17.5	1.0	0.70	10.36
TAV-D033-25		21.2	22.9	1.7	2.43	4.60
TAV-D036-25		0.0	0.5	0.5	0.90	2.14
1AV-D030-23		16.6	17.1	0.5	0.50	2.99
TAV-D039-25		0.0	1.6	1.6	0.81	13.36
1AV-D039-23		23.4	23.9	0.5	0.89	6.05
TAV-D040-25		100.3	101.9	1.6	0.73	1.31
TAV-D041-25		130.5	131.8	1.3	0.72	0.92
TAV-D042-25		10.6	17.0	6.4	1.68	13.32
1AV D042 23		19.4	22.0	2.6	0.84	17.51
		60.4	61.3	0.9	0.58	0.25
		61.8	63.4	1.6	1.04	2.58
		65.9	66.6	0.7	2.08	150.69
		68.4	69.1	0.7	0.76	1.57
TAV-D043-25		70.4	71.7	1.3	0.99	3.33
		82.5	83.8	1.3	0.65	0.25
		86.3	87.3	1.0	1.06	1.13
		101.7	102.8	1.1	1.20	0.25
		107.2	108.4	1.2	0.66	2.67
TAV-D044-25		35.0	37.2	2.2	2.44	2.06
1AV D077 23		67.3	68.0	0.7	0.66	2.13
		35.8	43.1	7.3	4.02	4.81
TAV-D045-25	including	41.5	42.5	1.0	21.54	8.31
1717 0043 23		84.0	84.7	0.7	0.80	0.25
		127.3	127.8	0.5	0.67	6.93
TAV-D046-25		61.3	62.0	0.7	0.50	0.80
1AV D040 23		64.4	66.8	2.4	0.59	0.25
TAV-D053-25		1.8	3.1	1.3	0.83	3.18
1AV D033 23		35.9	38.2	2.3	0.60	2.11
TAV-D055-25		0.0	2.0	2.0	0.68	2.54
		64.0	70.7	6.7	2.42	1.94
TAV-D057-25		72.4	73.6	1.2	1.34	10.42
14 D031-73		78.9	80.2	1.3	0.76	0.25
		81.4	83.3	1.9	0.91	5.28
TAV-D059-25		131.8	132.3	0.5	0.68	2.64

Hole ID		From	То	Interval	Au g/t	Ag g/t
<u></u>		28.3	28.8	0.5	0.76	38.49
TAV-D065-25		52.5	57.2	4.7	1.13	280.82
		60.7	61.2	0.5	2.02	0.25
TAV-D067-25		11.9	26.3	14.5	1.00	12.21
		4.0	10.5	6.5	1.30	10.60
TAV-D069-25		13.1	14.3	1.2	0.71	0.25
		16.5	18.9	2.4	0.76	2.22
		161.8	162.6	0.8	1.65	5.00
TAV-D070-25		163.7	164.8	1.1	0.65	2.75
		166.5	167.3	0.8	1.18	15.66
TAV/ D071 25		18.7	19.2	0.5	0.55	6.93
TAV-D071-25		40.9	42.2	1.3	0.66	0.25
		17.9	21.2	3.3	1.08	4.78
TAV-D117-25		23.8	24.9	1.1	0.60	12.88
		29.0	30.2	1.2	0.52	0.25
TAV-D118-25		20.4	23.8	3.4	2.04	1.15
		11.0	12.3	1.3	0.55	1.51
TAV-D119-25		13.0	17.0	4.0	0.93	2.96
		46.3	47.6	1.3	0.87	2.88
TAV-D120-25		14.3	17.0	2.7	1.25	5.73
TAV-D121-25		21.2	23.0	1.8	1.77	0.25
TAV-D122-25		1.5	6.1	4.6	1.07	12.47
		33.7	35.0	1.3	1.97	0.41
TAV-D123-25		41.0	42.0	1.0	0.77	3.46
		43.2	44.2	1.0	0.71	0.25
		29.8	31.7	1.9	8.41	2.38
TAV-D125-25	including	29.8	30.8	1.0	5.51	0.25
	including	30.8	31.7	0.9	11.63	4.75
TAV-D128-25		72.5	76.2	3.7	1.33	0.56
TAV-D129-25		25.4	28.8	3.4	0.68	11.35
TAV-D129-25		39.0	41.2	2.2	0.70	0.70
		78.4	79.7	1.3	0.56	0.25
TAV-D130-25		80.8	82.0	1.2	1.61	0.72
		84.8	85.6	0.8	0.74	19.09
TAV-D131-25		40.2	41.3	1.1	1.19	1.61
TAV-D133-25		32.2	32.8	0.6	1.04	9.64
TAN/ D124 25		50.5	51.5	1.0	0.64	39.49
TAV-D134-25		56.0	57.7	1.7	1.22	2.41
TAV-D135-25		39.4	42.8	3.4	5.01	5.44

Hole ID		From	То	Interval	Au g/t	Ag g/t
	including	39.4	40.7	1.3	8.37	0.25
		44.6	45.7	1.1	0.58	13.50
		48.3	51.2	2.9	1.13	2.59
		67.2	73.2	6.0	1.22	0.75
		75.8	81.7	5.9	1.13	1.20
TAV-D136-25		38.8	39.4	0.6	3.39	1.82
TAV-D137-25		39.5	40.9	1.4	2.42	3.82
TAV-D137-25		44.9	47.0	2.1	2.28	2.40
		46.9	47.9	1.0	0.51	9.20
TAV-D138B-25		50.7	59.2	8.5	3.70	2.09
TAV-D138B-25	including	50.7	51.9	1.2	9.93	1.63
		70.0	75.0	5.0	0.76	0.93
		37.4	41.0	3.6	1.54	11.01
		51.2	52.5	1.3	0.51	1.29
TAV-D139-25		59.0	60.3	1.3	0.57	9.12
TAV-D139-25		88.5	89.6	1.1	1.66	2.17
		91.6	92.6	1.0	1.85	5.30
		94.6	95.6	1.0	0.64	0.98
		68.4	70.5	2.1	1.07	0.83
TAV-D140-25		76.9	78.1	1.2	2.45	5.64
TAV-D140-25		95.8	96.8	1.0	0.99	3.54
		107.2	108.4	1.2	0.67	1.69
TAV/ D141 2F		56.9	57.8	0.9	0.54	3.04
TAV-D141-25		60.6	61.3	0.7	0.67	3.06
TAV-D142-25		122.5	123.4	0.9	1.24	9.79
		87.0	87.5	0.5	4.43	1.80
TAV-D143-25		88.2	89.5	1.3	0.59	4.43
		90.6	91.1	0.5	0.79	29.05

13 November 2025

Collars Table for Tavsan North Zone 2025

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Depth
TAV-D001-25	678691	4368408	1,066	0	90	86.0
TAV-D002-25	678656	4368377	1,067	0	90	104.0
TAV-D003-25	678702	4368465	1,057	0	90	94.4
TAV-D004-25	678721	4368489	1,056	0	90	90.0
TAV-D005-25	678731	4368516	1,053	0	90	77.1
TAV-D009-25	678857	4368634	1,063	0	90	50.0
TAV-D011-25	678841	4368613	1,064	0	90	110.0
TAV-D015-25	678815	4368566	1,068	0	90	60.2
TAV-D017-25	678799	4368544	1,068	0	90	71.0
TAV-D021-25	678774	4368518	1,064	0	90	61.0
TAV-D023-25	678806	4368500	1,079	0	90	47.0
TAV-D025-25	678791	4368471	1,081	0	90	68.0
TAV-D027-25	678774	4368445	1,080	0	90	48.0
TAV-D028-25	678938	4368656	1,078	0	90	46.4
TAV-D028A-25	678940	4368656	1,078	0	90	106.6
TAV-D031-25	678913	4368619	1,085	0	90	66.9
TAV-D033-25	678881	4368581	1,091	0	90	47.3
TAV-D034-25	678859	4368534	1,095	0	90	60.0
TAV-D036-25	678843	4368474	1,098	0	90	43.0
TAV-D037-25	678844	4368506	1,094	0	90	49.8
TAV-D039-25	678794	4368450	1,089	0	90	44.5
TAV-D040-25	678657	4368312	1,077	0	90	107.1
TAV-D041-25	678618	4368324	1,070	0	90	135.7
TAV-D042-25	678730	4368408	1,077	0	90	41.2
TAV-D043-25	678687	4368383	1,074	0	90	119.5
TAV-D044-25	678768	4368566	1,053	0	90	81.0
TAV-D045-25	678768	4368592	1,053	0	90	130.5
TAV-D046-25	678663	4368250	1,080	0	90	71.0
TAV-D053-25	678722	4368260	1,099	0	90	70.0
TAV-D055-25	678752	4368356	1,099	0	90	43.7
TAV-D057-25	678721	4368546	1,047	0	90	86.7
TAV-D059-25	678619	4368411	1,059	0	90	141.9
TAV-D063-25	678901	4368699	1,061	0	90	70.3
TAV-D064-25	678672	4368535	1,036	130	66	85.2
TAV-D065-25	678937	4368734	1,053	0	90	63.0
TAV-D066-25	678673	4368555	1,033	0	90	39.3

Hole ID	Easting	Northing	Elevation	Azimuth	Dip	Depth
TAV-D066A-25	678674	4368557	1,032	0	90	98.5
TAV-D067-25	678968	4368761	1,066	0	90	30.0
TAV-D068-25	678997	4368805	1,078	0	90	47.0
TAV-D069-25	679027	4368849	1,085	130	45	55.0
TAV-D070-25	678711	4368602	1,036	0	90	215.9
TAV-D071-25	679051	4368893	1,085	130	45	63.0
TAV-D117-25	678776	4368575	1,053	125	45	66.2
TAV-D118-25	678791	4368600	1,053	120	45	68.0
TAV-D119-25	678826	4368589	1,065	120	45	50.8
TAV-D120-25	678816	4368566	1,068	120	45	40.0
TAV-D121-25	678757	4368553	1,052	125	45	60.0
TAV-D122-25	678813	4368526	1,075	120	45	40.0
TAV-D123-25	678694	4368388	1,075	115	62	50.1
TAV-D124-25	678686	4368361	1,078	115	45	50.0
TAV-D125-25	678736	4368529	1,052	125	45	53.6
TAV-D126-25	678665	4368335	1,077	110	45	55.2
TAV-D127-25	678719	4368506	1,052	125	45	60.1
TAV-D128-25	678633	4368347	1,072	110	47	85.0
TAV-D129-25	678724	4368475	1,058	120	50	50.0
TAV-D130-25	678618	4368378	1,068	110	45	105.1
TAV-D131-25	678699	4368447	1,060	120	52	61.5
TAV-D132-25	678778	4368680	1,037	120	55	109.3
TAV-D133-25	678870	4368670	1,059	120	45	108.4
TAV-D134-25	678864	4368694	1,054	120	84	86.0
TAV-D135-25	678837	4368673	1,053	120	83	87.9
TAV-D136-25	678858	4368687	1,054	120	61	55.0
TAV-D137-25	678833	4368666	1,053	120	61	73.0
TAV-D138-25	678785	4368631	1,047	120	45	16.7
TAV-D138A-25	678830	4368667	1,053	120	45	20.3
TAV-D138B-25	678784	4368631	1,047	120	45	84.3
TAV-D139-25	678815	4368647	1,052	115	62	112.5
TAV-D140-25	678805	4368636	1,052	120	86	119.6
TAV-D141-25	678775	4368622	1,047	120	72	119.6
TAV-D142-25	678580	4368366	1,067	100	63	130.1
TAV-D143-25	678619	4368335	1,070	79	59	100.0

13 November 2025

The information in this announcement relating to Mineral Resources and Ore Reserves has been reported by the Company in accordance with the 2012 Edition of the 'Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves' (JORC Code) previously (refer to the Company's replacement prospectus which was released to the ASX market platform on 8 September 2025 (Prospectus) and is available on the Company website at http://www.arianaresources.com/) (Previous Market Announcement).

The Company confirms that it is not aware of any new information or data that materially affects the information included in the Previous Market Announcement and, in the case of estimates of Mineral Resources and Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the Previous Market Announcement continue to apply and have not materially changed.

Competent Persons Statements

The information in the Investment Overview Section of the prospectus (included at Section 3), the Company and Projects Overview (included at Section 5), and the Independent Geologist's Report (included at Annexure A of the prospectus), which relate to exploration targets, exploration results, mineral resources, Ore Reserves and forward looking financial information is based on, and fairly represents, information and supporting documentation prepared by Alfred Gillman, Ruth Woodcock, Izak van Coller, Hovhannes Hovhannisyan (together, the JORC Competent People), and Richard John Siddle, Andrew Bamber and Daniel Van Heerdan (together, the Qualified People). Refer to the Independent Geologist's Report for further information in relation to the information compiled by each of the JORC Competent People and the Qualified People, their professional memberships, their relevant qualifications and experience and their relationship with the Company.

The information that relates to Exploration Results at Tavsan are based upon information compiled by Ms. Ruth Woodcock, Exploration Group Leader, Ariana Resources plc. Ms. Woodcock is a member of Recognised Professional Organisations as defined by JORC 2012: a Chartered Geologist (CGeol, Geological Society of London) and European Geologist (EurGeol, European Federation of Geologists) and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity upon which she is reporting as a Competent Person as defined in the 2012 Edition of "The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves." Ms. Woodcock consents to the inclusion in this report of the matters based on the information compiled by her, in the form and context in which it appears.

The Company confirms that the form and context in which the Competent Persons' findings are presented have not been materially modified from the Previous Market Announcement.

Forward looking statements and disclaimer

This announcement contains certain "forward-looking statements". Forward-looking statements can generally be identified by the use of forward looking words such as "forecast", "likely", "believe", "future", "project", "opinion", "guidance", "should", "could", "target", "propose", "to be", "foresee", "aim", "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", "indicative" and "guidance", and other similar words and expressions, which may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production dates, expected costs or production outputs for the Company, based on (among other things) its estimates of future production of the Projects.

To the extent that this document contains forward-looking information (including forward-looking statements, opinions or estimates), the forward-looking information is subject to a number of risk factors, including those generally associated with the gold exploration, mining and production businesses. Any such forward-looking

Ariana Resources plc

Unit 27: 18 Stirling Highway

www.arianaresources.com

Nedlands, Perth, WA 6009

info@arianaresources.com

13 November 2025

statement also inherently involves known and unknown risks, uncertainties and other factors that may cause actual results, performance and achievements to be materially greater or less than estimated. These factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations, general economic and share market conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development (including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves), changes to the regulatory framework within which the Company operates or may in the future operate, environmental conditions including extreme weather conditions, geological and geotechnical events, and environmental issues, and the recruitment and retention of key personnel.

- ENDS-

The Board of Ariana Resources plc has approved this announcement and authorised its release.

For further information on the Company, please visit the website or please contact the following:

Enquiries:

Ariana Resources plc
Michael de Villiers, Chairman
Dr. Kerim Sener, Managing Director

Tel: +44 (0) 203 476 2080 info@arianaresources.com

Yellow Jersey PR Limited (Financial PR)
Dom Barretto / Shivantha Thambirajah /
Bessie Elliot

Tel: +44 (0) 7983 521 488 arianaresources@yellowjerseypr.com

About Ariana Resources plc:

Ariana is a mineral exploration, development and production company dual listed on AIM (AIM: AAU) and ASX (ASX: AA2), with an exceptional track record of creating value for its shareholders through its interests in active mining projects and investments in exploration companies. Its current interests include a major gold development project in Zimbabwe, gold-silver production in Türkiye and copper-gold-silver exploration and development projects in Kosovo and Cyprus.

For further information on the vested interests Ariana has, please visit the Company's website at www.arianaresources.com.

 χ https://x.com/ArianaResources

in https://linkedin.com/company/ariana-resources-plc

13 November 2025

JORC Table 1 - Tavsan

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
	•	•
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed 	 Reverse circulation (RC) chips were collected at 1 m intervals and in some cases over 0.5 m intervals over the mineralised zone. The chips were collected into plastic sample bags from a cyclone to ensure maximum recovery. The samples were split using a standard riffle-splitter to around 0.25 to 0.5 kg per sample. Diamond drill core is cut using a diamond rock saw, and half-core samples are taken in lithologically appropriate intervals, ranging from 0.5 m to 3 m in length, with additional sampling extending before and after mineralisation. Diamond core void of mineralisation was not a priority for the company and therefore not all core has been sampled once mineralisation controls were established. Core recovery is recorded into the database. For diamond core duplicate sample analysis, half core samples were cut into two quarter core samples, one as the primary sample and the other for duplicate analysis. Half core always remains in the core box. Samples from the initial exploration programmes were sent to an ISO accredited ALS Chemex in Vancouver, British Columbia for Au and Ag analysis by fire assay and latterly to a similar ALS laboratory in Izmir, which is still used as an external laboratory for QA/QC purposes. Samples are now prepared and analysed at Zenit's own internal Kiziltepe Mine Laboratory, for Au (fire assay), Ag (AAS), and 4-acid digest for all other elements. Under normal operational procedures, sampling undertaken during early-stage exploration or reconnaissance is submitted to the laboratory for 30g fire assay analysis. However, sampling undertaken on more advanced or resource stage projects are submitted for 50 g fire assay analysis, where it is expected that the larger sample mass will provide marginally more representative results. As of January 2022, the Kiziltepe Mine Laboratory houses two ICP-OES (PerkinElmer Avio 550 and PerkinElmer Optima 8000) instruments, two Atomic Absorption Spectrometers (PerkinElmer's PinAAcle 900F), three dryi

Criteria	JORC Code explanation	Commentary
	information.	 Rock-saw channel sampling was completed in early 2020 over 60 outcrops of mapped mineralised jasperoid to support the resource. A petrol powered dual bladed diamond saw was used to cut 35 millimetre (mm) thick channels to represent halved HQ core. Historic drilling and sampling procedures (pre-2000) were not available, but work undertaken was completed by reputable exploration companies, so it is assumed that sampling was completed in line with industry standards at the time. This data amounts to less than 15% of the drilling database to date. In 2008 Ariana Resources successfully completed check assaying of 42 coarse reject material samples to test historical drilling to provide additional confidence to historical Quality Assurance and Quality Control (QA/QC) procedures.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer,	In total 26,074.7 m of drilling across 480 drill holes has been completed across the Tavsan deposit. Additionally 1,169 m has been sampled across 156 rocksaw channels.
	rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or	 Diamond drillholes comprise a combination of PQ and HQ diameter (standard tube). Drilling on the project can be summarised as follows:
	standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	o 2025 – 71 diamond holes for 5,345.0 m (Tavsan North to 17 October 2025)
		 2024 – 3 diamond holes for 741.4 m
		o 2023 – 99 diamond holes for 7,808.2 m
	what method, etc).	o 2022 – 61 diamond holes for 4,037.2 m
		o 2021 – 71 diamond holes for 2,173.7 m
		o 2019 – 4 diamond holes for 90.5 m (Tavsan Far North)
		o 2006 - 87 RC (13.3 centimetre) holes for 1,611 m
		o 2004 - 35 PQ diamond holes for 1,419 m
		o 1997 – 8 diamond holes for 341m, 7 RC holes for 543 m
		o 1988 - 34 RC holes for 1,965 m
		 All historic holes were drilled by Ranger (1988), Teck Cominco (1997) and, Pusula Madencilik (Odyssey's 100% Turkish subsidiary) and their various contractors prior to the acquisition of the project by Ariana Resources plc and latterly Zenit Madencilik San. ve. Tic. A.Ş.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature 	 Diamond drillcore recoveries were monitored and recorded into the sampling database. No recovery was calculated for RC drilling conducted at Tavsan. Select historic drill holes were examined for core recovery at the site, which was deemed to be satisfactory. Overall core recovery for 2021/2022 diamond drilling was 88% for 2,854 measurements, with 95% of drilling showing over 70% recovery. Core recovery for the 2023 diamond drilling programme was 89%, with 94 % drilling showing over 70% recovery. Core recovery for the 2025 drilling programme

Criteria	JORC Code explanation	Commentary
	of the samples. • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	to date is 88% (Tavsan North Zone). • There is no correlation between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All diamond core holes were logged lithologically (regardless of the presence of mineralisation) using a coded logging system for rock type, mineralisation, grain size, colour, alteration and any other relevant observations. Mineralised zones were identified from observation of mineralogy and lithological characteristics. Portable XRF analysis was conducted post drilling, to provide supporting geochemical data for non-sampled regions in all drilling prior to 2023. Areas identified as geochemically anomalous by pXRF were further sampled. The pXRF was calibrated with the calibration disks on a regular basis. Logging is qualitative in the comments section and quantitative (scales 1 to 3 or percentages) in the attributes such as alteration or mineralisation. Logging of RC samples was carried out on washed samples with geological characteristics recorded to a database. All diamond drill core trays are photographed (dry and wet) before sampling. Representative samples of RC chips are taken for each trip tray and photographed.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to 	 Core samples were cut using an electric circular diamond saw with water supply for dust suppression. Half core remains in the core tray for reference. RC sampling: Samples were collected at 1 m intervals and split using a two-stage riffle splitter, running each sample through the splitter twice. Wet intervals were sub-sampled with scoop or spear. Samples were oven-dried at the laboratory if necessary. Although every metre was sampled from top to bottom of each hole, metres which were clearly unmineralised were not assayed. Sample preparation technique is appropriate to the mineralisation style. Splitting and sample preparation conducted on samples at the Kiziltepe Mine Laboratory: Drying at 105°C Crushing whole sample to ≤2 mm Splitting of crushed sample to analyse Pulverising sub-sample to 80% passing ≤75 μm

13 November 2025

Criteria	JORC Code explanation	Comr	nentary		
	ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.				
	Whether sample sizes are appropriate to the grain size of the material being sampled.				
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of 	•	beginning of the inserting a field du material samples i were inserted. Und (1:16 to 1:20 samp These were determaccuracy at the programme has performance is ac estimation. Standa taken by ALS Izm Reporting of ALS's results to fall within them, as per the la All suitable measures under the (1:22), blank sample to monitor the accu samples were subsof 18%. In drill programm submitted in batches	drill programs plicate and unanto the sample certified standa les), during Odined to not be relaboratory. Significant she dequate to surd and duplicate ir and perform internal QA/Q the 95% confib's internal molares were take sentative. Semployed in a insertion of cees (1:22), pulp racy and precise mitted to ALS (dees of 35 to ALS)	mme was instituted at the mes, which consisted of certified/certified reference is stream. No field blank rds were typically inserte yssey's drilling campaigns reliable enough to measure Odyssey's own QA/QG ortcomings, but the lapport a mineral resource samples for QA/QC were ance was noted as good C samples have found the dence interval assigned to intoring standards. In to ensure that sample will drill programmes prior the triffied reference standard and crush duplicates (2:22 ion of laboratory data whe Global, Izmir. Insertion rating the properties of the prope
	accuracy (ie lack of		Reconnaissance	Channel and Scout Drilling	Resource Definition Drill
	bias) and precision		Batch size 35	Batch size 35	Batch size 35
	have been established.		1 blank	1 blank	1 blank
			1 CRM 1 field or 1 crush	1 CRM	1 CRM
			duplicate	1 field duplicate	1 field duplicate *
			/	1 crush duplicate	1 crush duplicate
			/ 22 complex	/	1 pulp duplicate
	1	1	32 samples	31 samples	30 samples
			8.57%	11.43%	14.29%

QA/QC rate

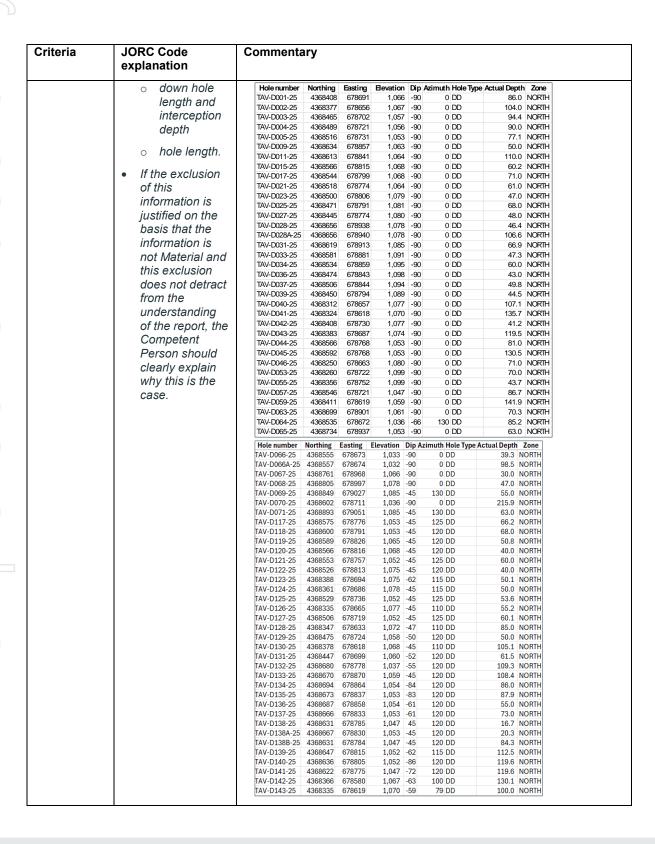
Criteria	JORC Code explanation	Commentary
		 Since 2019, samples have been submitted to Kiziltepe Mine Laboratory in batches of 20 to include 1 field blank, 1 CRM, 1 field duplicate and 1 pulp duplicate. Insertion rate of 20%. The Kiziltepe Mine Laboratory adds an additional duplicate sample which is a split of the 19th sample of each batch. Further to this the laboratory adds 4 internal standards for their own instrumental QA/QC checks. In addition to routine QA/QC procedures, 59% of all Tavsan drill samples from the 2021/2022 programme were duplicated to submit to ALS Global, Izmir, as check samples at an external laboratory to confirm internal Kiziltepe Mine Laboratory results, whilst the laboratory expansion was taking place and while laboratory procedures and instrumentation was being checked internally. For the 2023 programme, 10% of all drill samples were duplicated to submit to ALS Global, Izmir, as check samples at an external laboratory to confirm internal Kiziltepe Mine Laboratory results. The overall quality of QA/QC procedures is considered adequate to ensure the validity of the data used for resource estimation purposes. The handheld portable XRF is an Olympus Vanta. A series of 10 blank and certified reference material samples are used to check the quality of the pXRF data. These are scanned at a rate of 1 blank and 1 CRM for every 100 samples. The device does not require further calibration.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intercepts were inspected by Mr. Joe Hirst (Tetra Tech Competent Person) during the site inspection in 2018. Data input has been completed in accordance with company procedures, which have been reviewed by Tetra Tech during their MRE in 2018 and 2020. Data verification was also independently completed in 2006 by Mr. Antoine Yassa of P & E Mining Consultants Inc. during an earlier phase of exploration. 12 check samples were taken. Results were deemed satisfactory and demonstrated that the grade of gold is very similar in most instances, to what was originally reported by Odyssey. Prior to resource estimation, below detection limit assay results have been replaced with values of zero. Primary data, data entry procedures, data verification and data storage protocols are in line with industry best-practice. All samples (30 g or 50 g) are analysed using fire assay with AAS (Au-AA23) and aqua regia with ICP-AES (ME-ICP41). All samples before 2019 were submitted to the internationally accredited laboratory of ALS Global in Izmir, Turkey (ISO 9001:2008 accredited). Samples taken in 2019 - 2025 have been submitted to Kiziltepe Mine Laboratory (TS EN ISO/IEC 17025:2017 accredited since October 2022), with minimum 10% also selected for check assays at ALS Global in Izmir throughout the sampling programme. Samples are chosen from areas suspected to be mineralised. Since early 2021 the Kiziltepe Mine Laboratory has undergone expansion to deal with increased sample capacity.

13 November 2025

Criteria	JORC Code explanation	Commentary
		Initial verification of assay results from newly installed laboratory instruments is still undergoing internal review. Check results from the external laboratory (ALS Izmir) have been received and reviewed, demonstrating that received assay data and associated QA/QC samples fall within expected levels. Evaluations of incoming check data for the Zenit and ALS laboratories will continue to be assessed.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	 All collar positions were located initially by hand-held GPS (Garmin Etrex 10 and 30) and later surveyed by a professional surveyor using DGPS equipment. All coordinates are recorded in UTM ED50 35N. Down hole surveys were not completed at Tavsan as holes were typically drilled vertically. However, drill holes were surveyed, where possible, by open hole methods at 20 m intervals from surface, during a project review in 2015; using a Flexit down hole multi-shot survey device. All holes were surveyed in the 2021/2022, 2023/2024 and 2025 drilling programmes using a standard Electronic Multi-shot Magnetic survey deviation tool (Devico PeeWee). Topographic data is collected by DGPS. Additionally, 5 m and 25 m contours were generated from ortho-rectified WorldView satellite imagery.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The Resource area has been drilled as access allows, resulting in an irregular data spacing, typically between 25 m and 80 m between collars (average collar spacing between all zones is 35 m). Samples were composited to 1 m prior to estimation. 281 diamond drill holes (16,611 m), 128 RC drill holes (4,115 m) and 156 rock-saw channels (1,169 m) were used to model the mineralisation in the most recent MRE (March 2024). Since the MRE, 71 diamond holes has been drilled at Tavsan North Zone for 5,345 m. Sample compositing has not been applied at the sampling stage. Sample spacing and distribution is sufficient to establish the geological and grade continuity required for modelling and resource estimation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the 	 The mineralisation is primarily outcropping at surface and has been drilled primarily vertically, with full intersections. Some inclined holes have been drilled between -80 and -40 degrees of dip, primarily stepped off from the mineralisation to delineate the edges of the mineralisation at depth. No sampling bias is observed from the orientation of drilling with regards to the mineralised structures. True thickness with respect to apparent thickness is well understood as most intersections are normal to the mineralisation. No biases are expected from the drilling direction.

orientation and the

Criteria	JORC Code explanation	Commentary
	orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	
Sample security	The measures taken to ensure sample security.	 Samples are stored in a secure location (Balikoy Depot, and more recently the Tavsan mine site) in a clean area free of any contamination. Full chain of custody documentation is used when transferring the samples to the laboratory and has been overseen by the responsible company geologist. In drilling programmes pre-2019 the measures taken to ensure sample security for samples used for analysis and QA/QC include the following: Chain of Custody is demonstrated by both Company and ALS Global or Kiziltepe Mine Laboratory in the delivery and receipt of sample materials. Upon receipt of samples, ALS Global delivers by email to the Company's designated QC Manager, confirmation that each batch of samples has arrived, with its tamper-proof seal intact, at the allocated sample preparation facility. Any damage to or loss of samples within each batch (e.g., total loss, spillage or obvious contamination), must also be reported to the Company in the form of a list of samples affected and detailing the nature of the problem(s). In all drilling programmes since 2020, the majority of samples have been analysed by the Kiziltepe Mine Laboratory. Samples are delivered securely from the drill site to the laboratory by the exploration team and are securely held at the laboratory in the fenced off and guarded mine site, with no unauthorised access.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 In 2020 Tetra Tech reviewed the protocols and procedures adopted and found the various aspects sufficient to support mineral resource estimation. Tetra Tech completed an independent analysis of the QA/QC data completed by Odyssey, and whilst there are shortcomings, the ALS lab QA/QC programme was robust. The data is deemed appropriate for resource estimation. Ariana has implemented QA/QC programmes covering all aspects of sample location and collection that meets or exceeds the currently accepted industry standards. Ariana implemented a QA/QC programme based on international best practice during the initial exploration work and subsequent drilling programmes. The company has continued to review and refine the QA/QC programme as these exploration campaigns have progressed. Zenit continues to implement QA/QC programmes based on international best practice during the drilling programmes.



13 November 2025

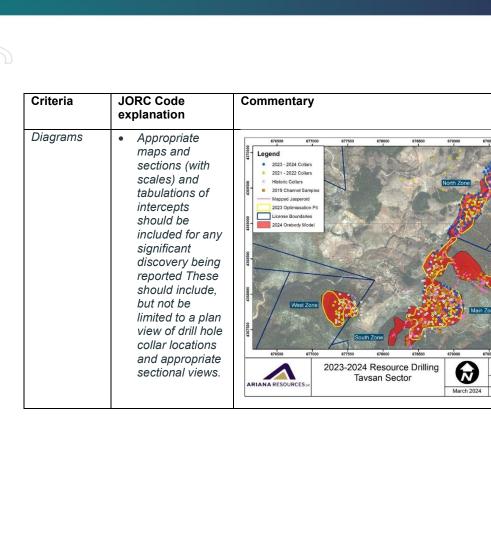
Section 2 Reporting of Exploration Results

Criteria	JORC Code	also apply to this section.) Commentary
Criteria	explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	The Tavsan Property consists of four operating licenses owned by Zenit Madencilik San. ve Tic. A.S. ("Zenit") Joint Venture ("JV") with Proccea Construction Co. and Ozaltin Holding A.S. (23.5% owned by Ariana). Licence numbers: Orencik license no: 12743, due date of 11.06.2029. Kavaklı license no: 59770, due date of 11.06.2029. Dağardı license no: 70484, due date of 10.01.2030. Evciler license no: 72400, due date of 26.01.2035. In 2008, Ariana acquired the Project for US \$500,000 in cash and 3 million shares in the Company at 5 pence per share from Odyssey Resources Limited and a retained royalty of up to 2% on future gold production payable to Teck Resources Limited. This royalty has since been transferred to Sandstorm Gold Ltd. There are no known impediments to current operations.
Exploration done by other parties	Acknowledgmen t and appraisal of exploration by other parties.	 A summary of exploration activities at Tavsan: 1980s - Initially discovered by Australian company Ranger. 1988 - Ranger drilled 34 RC holes totalling 1960.5 m in the primary mineralisation zone. Ranger completed no further work. 1995 - The MTA (Turkish government exploration agency) sampled the primary ore zone. 1996 - Teck Cominco Ltd acquired the property and conducted several systematic surface sampling programmes yielding an average grade 2.3 g/t Au at surface. 1997 - Teck Cominco Ltd initiated a 341 m DD programme for 8 holes (TD01 - TD10). 265 samples were sent for Inductively Coupled Plasma (ICP) and fire assay using a 30-gram aliquot. A RC programme totalling 543 m for 7 holes (T05 - T14) was run concurrently with the DD programme. 362 RC chip samples were analysed for gold using fire assay on a 30-gram aliquot. 2003 - Pusula Madencilik, Odyssey Resources Ltd's 100% owned subsidiary company in Turkey acquired the Tavsan property from Cominco. 2004 - Odyssey completed the first of a 3-phase drilling

Criteria	JORC Code explanation	Commentary
		 programme. Phase 1 totalled 1,067.7 m and consisted of 20 DD holes (OD1 – OD20). Phase 2 consisted of 15 DD holes (OD21 – OD35), totalling 351 m. 2005 - Odyssey undertook a surface sampling programme on 11 surface-exposed gold mineralised jasperoid zones. 2006 - Odyssey completed Phase 3 of drilling with the addition of 87 RC holes (ODX36-ODX131) totalling 1,611 m. 2008 - Ariana Resources acquired the Tavsan project. 2010 - Tavsan is added into the Zenit portfolio.
Geology	Deposit type, geological setting and style of mineralisation.	 The property is located in the Izmir-Ankara suture zone in north-western Anatolia. The formations present span from Jurassic to Tertiary and typically comprise metamorphosed sedimentary sequences, displaying intense compressional tectonic features. The Property includes an upper thrust plate of Late Cretaceous ophiolitic rocks (Dagardi Melange), jasperoid gold-bearing silicification along the thrust surface and a footwall of Jurassic-Cretaceous Budagan Formation massive, a massive micritic limestone. Through the summer of 2022, the Ariana team completed remapping of the Tavsan license area to 1:2,000 and 1:5,000 scale (See Diagrams).
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Beasting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole	No new exploration data is included in this report. All relevant data has been reported in press releases to AIM. The purpose of the 2019 to 2020 rock-saw channel sampling programme was to provide a further increase in the confidence of the resource classification, and to reduce planned infill drilling meters for future resource development work. The sampling included areas that are were classified as part of the JORC Exploration Target and Inferred Resource, with a view to improving confidence in the resource estimate and an improvement in the resource classification. A total of 751 samples (including 118 QA/QC samples), averaging a length of 1.8 m were extracted during the sampling activities. Of these samples, 676 were sent to the Kiziltepe Mine Laboratory for gold and silver fire assay only. A further 76 samples were sent to ALS in Izmir for gold and silver fire assay and multi-element ICP analysis. The channel sampling makes up only 6% of the drilling database. Infill resource drilling and exploration drilling was completed in 2022-2023. 2024 collars: Holenumber Northing Easting Bevation Dip Azimuth Hole Type Actual Depth TAV-D001-24 4388879 678909 105709-90 0 DD 213.8 TAV-D002-24 4388191 679085 1038.57-90 0 DD 213.8 TAV-D003-24 4388191 679085 1038.57-90 0 DD 213.8 TAV-D003-24 4388193 679077 1054.2-90 0 DD 256.9

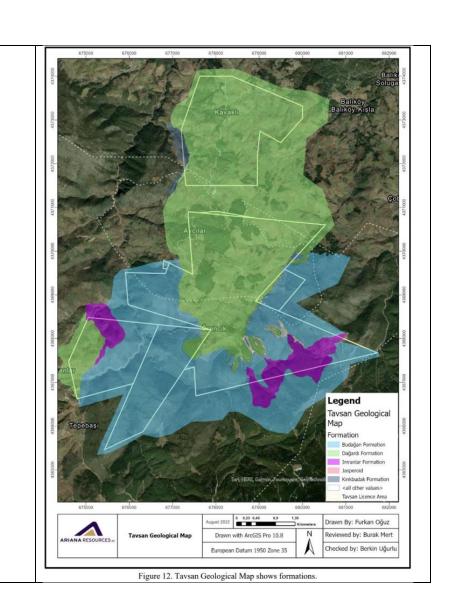
	JORC Code explanation	Commentary										
Data aggregation methods	JORC Code explanation In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Metal equivalents have real No aggregation has be sampling interval honour. Significant down-hole interprogramme, using a 0.5 g/terms.	een appl ring lithol ercepts	lied be ogical for the mum of including including including including including including	eyono chan ne Ta	d the ges of	stan down t n 202	to 30 25 d	cm. rilling			
					107.2	108.4	1.2	0.66	2.7			

Criteria	JORC Code explanation	Commentar	entary						
		HoleID		From	То	Interval	Au_gt	Ag_gt	
				35.8	43.1	7.3	4.02	4.8	
		TAV-D045-25	including	41.5	42.5	1.0	21.54	8.3	
		IAV-2045-25		84.0	84.7	0.7	0.80	0.3	
				127.3	127.8	0.5	0.67	6.9	
		TAV-D046-25		61.3	62.0	0.7	0.50	0.8	
		IAV-D040-25		64.4	66.8	2.4	0.59	0.3	
		TAV-D053-25		1.8	3.1	1.3	0.83	3.2	
		IAV-D053-25		35.9	38.2	2.3	0.60	2.1	
		TAV-D055-25		-	2.0	2.0	0.68	2.5	
				64.0	70.7	6.7	2.42	1.9	
		TAV (DOE 7 OF		72.4	73.6	1.2	1.34	10.4	
		TAV-D057-25		78.9	80.2	1.3	0.76	0.3	
				81.4	83.3	1.9	0.91	5.3	
		TAV-D059-25		131.8	132.3	0.5	0.68	2.6	
				28.3	28.8	0.5	0.76	38.5	
		TAV-D065-25		52.5	57.2	4.7	1.13	280.8	
		1		60.7	61.2	0.5	2.02	0.3	
		TAV-D067-25		11.9	26.3	14.5	1.00	12.2	
		2007 20		4.0	10.5	6.5	1.30	10.6	
		TAV-D069-25		13.1	14.3	1.2	0.71	0.3	
		1 5000 25		16.5	18.9	2.4	0.76	2.2	
				161.8	162.6	0.8	1.65	5.0	
		TAV-D070-25		163.7	164.8	1.1	0.65	2.8	
		IAV-2010-23		166.5	167.3	0.8	1.18	15.7	
		TAV-D071-25		18.7	19.2	0.5	0.55	6.9	
				40.9 17.9	42.2 21.2	1.3	0.66 1.08	0.3 4.8	
		TAV-D117-25							
		IAV-D117-25		23.8	24.9	1.1	0.60	12.9	
		TN/ D440.05		29.0	30.2	1.2	0.52	0.3	
		TAV-D118-25		20.4	23.8	3.4	2.04	1.2	
		TN/ P/ 40 05		11.0	12.3	1.3	0.55	1.5	
		TAV-D119-25		13.0	17.0	4.0	0.93	3.0	
				46.3	47.6	1.3	0.87	2.9	
		TAV-D120-25		14.3	17.0	2.7	1.25	5.7	
		TAV-D121-25		21.2	23.0	1.8	1.77	0.3	
		TAV-D122-25		1.5	6.1	4.6	1.07	12.5	
		l		33.7	35.0	1.3	1.97	0.4	
		TAV-D123-25		41.0	42.0	1.0	0.77	3.5	
				43.2	44.2	1.0	0.71	0.3	
		1		29.8	31.7	1.9	8.41	2.4	
		TAV-D125-25		29.8	30.8	1.0	5.51	0.3	
			including	30.8	31.7	0.9	11.63	4.8	
		TAV-D128-25		72.5	76.2	3.7	1.33	0.6	
		TAV-D129-25		25.4	28.8	3.4	0.68	11.4	
		17 W D123-23		39.0	41.2	2.2	0.70	0.7	
				78.4	79.7	1.3	0.56	0.3	
		TAV-D130-25		80.8	82.0	1.2	1.61	0.7	
				84.8	85.6	0.8	0.74	19.1	
		TAV-D131-25		40.2	41.3	1.1	1.19	1.6	
		TAV-D133-25		32.2	32.8	0.6	1.04	9.6	
		TAV-D134-25		50.5	51.5	1.0	0.64	39.5	
		IAV-D134-25		56.0	57.7	1.7	1.22	2.4	
				39.4	42.8	3.4	5.01	5.4	
			including	39.4	40.7	1.3	8.37	0.3	
		TAV-D135-25		44.6	45.7	1.1	0.58	13.5	
		IAV-D135-25		48.3	51.2	2.9	1.13	2.6	
				67.2	73.2	6.0	1.22	0.8	
		1 1		75.8	81.7	5.9	1.13	1.2	
	1					2.0	0		

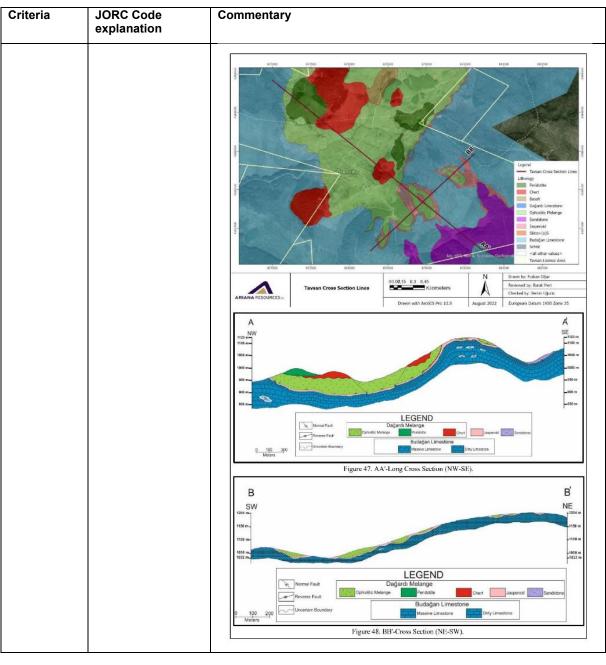


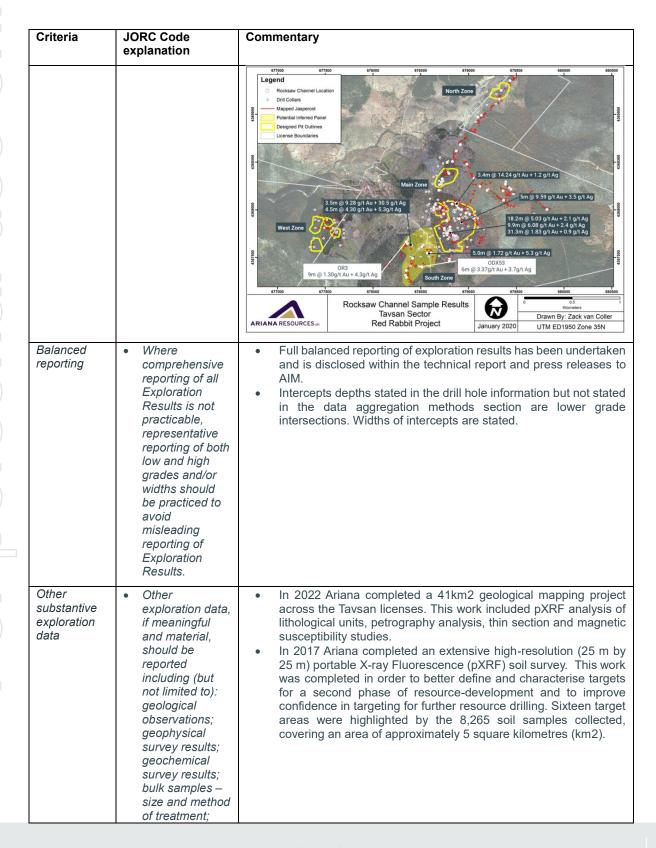
Criteria	JORC Code explanation	Commentary						
		Hole ID	Fro	m To	Interval	Au_gt	Ag gt	
		TAV-D136-25		39.4		3.39	1.8	
		TAV-D137-25		0.5 40.9 0.9 47.0		2.42	3.8 2.4	
				6.9 47.0		0.51	9.2	
		TAV-D138B-25		.7 59.2		3.70	2.1	
		inc		0.7 51.		9.93	1.6	
				0.0 75.0 7.4 41.0		0.76 1.54	0.9	
				.2 52.5		0.51	1.3	
		TAV-D139-25		.0 60.3	3 1.3	0.57	9.1	
		17 10 100 20		89.6		1.66	2.2	
				.6 92.6 .6 95.6		1.85 0.64	5.3 1.0	
				3.4 70.5		1.07	0.8	
		TAV-D140-25		i.9 78.		2.45	5.6	
		51.10 20		6.8 96.8		0.99	3.5	
				7.2 108.4 5.9 57.8		0.67 0.54	1.7 3.0	
		TAV-D141-25		0.6 61.3		0.67	3.1	
		TAV-D142-25	122			1.24	9.8	
		TAV-D143-25		7.0 87.5 3.2 89.5		4.43 0.59	1.8 4.4	
		IAV-D143-25		0.6 91.		0.59	29.1	
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	holes whorizonta The mindipping. intersect hole leng Three-di sample s	vere ad al to int neralise As su tion len gth and imensic selectio	vance erseced ho ch, th gth. I shou onal w n to c	ed at be to dipping rizons e true velowevel lowevel lower true velower lower end to lower end to lower end to lower end lower	etwe ag stru are width er, rec pe reg ne mo	en - ucture com is ge orde garde odels resou	advanced vertically. Some 80 and -40 degrees from es, or to delineate at depth. monly flat-lying to gently enerally represented by the dintercept widths are down das true widths. have been generated for arce estimate. This process is intercepts.

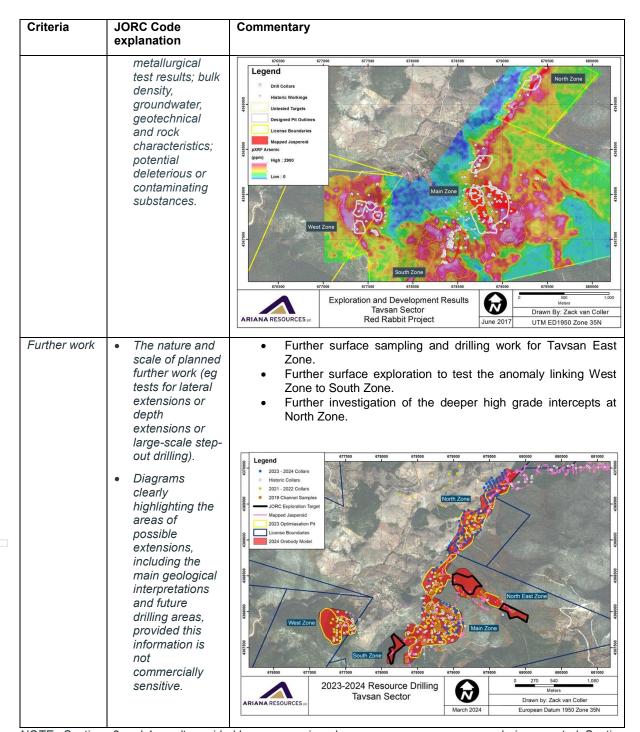
13 November 2025



Drawn by: Zack van Coller European Datum 1950 Zone 35







13 November 2025

NOTE: Sections 3 and 4 aren't provided here as no mineral resources or ore reserves are being reported. Section 5 is not relevant to this work as there is no estimation or reporting of diamonds or other gemstones in this project.